Saturday, 8 July 2017

Massa Média Média De Filtros


Médias móveis Médias móveis Com conjuntos de dados convencionais, o valor médio é geralmente o primeiro, e uma das estatísticas de resumo mais úteis para calcular. Quando os dados estão na forma de uma série temporal, a série significa uma medida útil, mas não reflete a natureza dinâmica dos dados. Os valores médios calculados em períodos curtos, quer antes do período atual, quer centrados no período atual, são geralmente mais úteis. Uma vez que esses valores médios variam, ou se movem, à medida que o período atual se move do tempo t 2, t 3. etc., eles são conhecidos como médias móveis (Mas). Uma média móvel simples é (tipicamente) a média não ponderada de k valores anteriores. Uma média móvel ponderada exponencialmente é essencialmente a mesma que uma média móvel simples, mas com contribuições para a média ponderada pela proximidade com a hora atual. Como não há um, mas toda uma série de médias móveis para qualquer série, o conjunto de Mas pode ser plotado em gráficos, analisados ​​como uma série e usados ​​em modelagem e previsão. Uma série de modelos pode ser construída usando médias móveis, e estas são conhecidas como modelos MA. Se esses modelos forem combinados com modelos autorregressivos (AR), os modelos compostos resultantes são conhecidos como modelos ARMA ou ARIMA (o I é para integrado). Médias móveis simples Uma vez que uma série temporal pode ser considerada como um conjunto de valores, t 1,2,3,4, n a média desses valores pode ser calculada. Se assumirmos que n é bastante grande, e selecionamos um inteiro k, que é muito menor que n. Podemos calcular um conjunto de médias de bloco, ou médias móveis simples (da ordem k): cada medida representa a média dos valores de dados ao longo de um intervalo de observações k. Observe que o primeiro MA possível da ordem k gt0 é aquele para t k. Mais geralmente podemos soltar o subíndice extra nas expressões acima e escrever: Isto indica que a média estimada no tempo t é a média simples do valor observado no tempo t e as etapas de tempo precedentes de k-1. Se forem aplicados pesos que diminuam a contribuição das observações que estão mais longe no tempo, a média móvel é dita suavizada exponencialmente. As médias móveis são freqüentemente usadas como forma de previsão, pelo que o valor estimado para uma série no instante t 1, S t1. É tomado como MA durante o período até e inclusive o tempo t. por exemplo. A estimativa de hoje é baseada em uma média de valores registrados anteriores até e inclusive ontem (para dados diários). As médias móveis simples podem ser vistas como uma forma de suavização. No exemplo ilustrado abaixo, o conjunto de dados de poluição do ar mostrado na introdução deste tópico foi aumentado por uma linha de média móvel de 7 dias (MA), mostrada aqui em vermelho. Como pode ser visto, a linha MA suaviza os picos e as depressões nos dados e pode ser muito útil na identificação de tendências. A fórmula padrão de cálculo direto significa que os primeiros pontos de dados k -1 não possuem valor MA, mas, posteriormente, os cálculos se estendem ao ponto final de dados da série. PM10 valores médios diários, fonte de Greenwich: London Air Quality Network, londonair. org. uk Um dos motivos para o cálculo de médias móveis simples da maneira descrita é que permite que os valores sejam computados para todos os intervalos de tempo do tempo até o presente, e Como uma nova medida é obtida para o tempo t 1, o MA para o tempo t 1 pode ser adicionado ao conjunto já calculado. Isso fornece um procedimento simples para conjuntos de dados dinâmicos. No entanto, existem algumas questões com essa abordagem. É razoável argumentar que o valor médio nos últimos 3 períodos, por exemplo, deve estar localizado no tempo t -1, e não no tempo t. E para um MA em um número par de períodos, talvez ele deve estar localizado no meio do ponto entre dois intervalos de tempo. Uma solução para esta questão é usar cálculos de MA centrados, em que o MA no tempo t é a média de um conjunto simétrico de valores em torno de t. Apesar de seus méritos óbvios, essa abordagem não é geralmente usada porque requer que os dados estejam disponíveis para eventos futuros, o que pode não ser o caso. Nos casos em que a análise é inteiramente de uma série existente, o uso de Mas centrado pode ser preferível. As médias móveis simples podem ser consideradas como uma forma de suavização, eliminando alguns componentes de alta freqüência de uma série de tempo e destacando (mas não removendo) tendências de maneira similar à noção geral de filtragem digital. De fato, as médias móveis são uma forma de filtro linear. É possível aplicar uma computação média móvel a uma série que já foi suavizada, ou seja, suavizando ou filtrando uma série já suavizada. Por exemplo, com uma média móvel da ordem 2, podemos considerá-la como sendo calculada usando pesos, de modo que o MA em x 2 0,5 x 1 0,5 x 2. Do mesmo modo, o MA em x 3 0,5 x 2 0,5 x 3. Se nós Aplicar um segundo nível de suavização ou filtragem, temos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3, isto é, a filtragem de 2 estágios O processo (ou convolução) produziu uma média móvel simétrica ponderada de forma variável, com pesos. Várias convoluções podem produzir médias móveis bastante ponderadas, algumas das quais foram encontradas de particular uso em campos especializados, como nos cálculos do seguro de vida. As médias móveis podem ser usadas para remover efeitos periódicos se computado com o comprimento da periodicidade como conhecido. Por exemplo, com os dados mensais, as variações sazonais podem ser muitas vezes removidas (se este for o objetivo) aplicando uma média móvel simétrica de 12 meses com todos os meses ponderados igualmente, exceto o primeiro e o último que são ponderados por 12. Isso ocorre porque haverá Tenha 13 meses no modelo simétrico (tempo atual, t. - 6 meses). O total é dividido por 12. Procedimentos semelhantes podem ser adotados para qualquer periodicidade bem definida. Médias móveis ponderadas exponencialmente (EWMA) Com a fórmula média móvel simples: todas as observações são igualmente ponderadas. Se chamássemos esses pesos iguais, alfa t. Cada um dos pesos k seria igual a 1 k. Então a soma dos pesos seria de 1, e a fórmula seria: já vimos que as múltiplas aplicações desse processo resultam na variação dos pesos. Com médias móveis exponencialmente ponderadas, a contribuição para o valor médio de observações mais removidas no tempo é deliberada reduzida, enfatizando eventos mais recentes (locais). Essencialmente, um parâmetro de suavização, 0lt alfa lt1, é introduzido e a fórmula revisada para: Uma versão simétrica desta fórmula seria da forma: se os pesos no modelo simétrico forem selecionados como os termos dos termos da expansão binomial, (1212) 2q. Eles somarão para 1, e como q se tornar grande, irá se aproximar da distribuição Normal. Esta é uma forma de ponderação do kernel, com o Binomial atuando como a função kernel. A convolução de dois estágios descrita na subseção anterior é precisamente esse arranjo, com q 1, produzindo os pesos. Em suavização exponencial, é necessário usar um conjunto de pesos que somem para 1 e que reduzem de tamanho geométricamente. Os pesos utilizados são tipicamente da forma: Para mostrar que esses pesos somam para 1, considere a expansão de 1 como uma série. Podemos escrever e expandir a expressão entre parênteses usando a fórmula binomial (1- x) p. Onde x (1-) e p -1, o que dá: Isto fornece uma forma de média móvel ponderada da forma: esta soma pode ser escrita como uma relação de recorrência: o que simplifica bastante a computação e evita o problema de que o regime de ponderação Deve ser estritamente infinito para os pesos somarem para 1 (para valores pequenos de alfa. Isso geralmente não é o caso). A notação utilizada por diferentes autores varia. Alguns usam a letra S para indicar que a fórmula é essencialmente uma variável suavizada e escreve: enquanto a literatura da teoria do controle geralmente usa Z em vez de S para os valores exponencialmente ponderados ou suavizados (veja, por exemplo, Lucas e Saccucci, 1990, LUC1 , E o site NIST para mais detalhes e exemplos trabalhados). As fórmulas citadas acima derivam do trabalho de Roberts (1959, ROB1), mas Hunter (1986, HUN1) usa uma expressão da forma: que pode ser mais apropriada para uso em alguns procedimentos de controle. Com o alfa 1, a estimativa média é simplesmente seu valor medido (ou o valor do item de dados anterior). Com 0,5, a estimativa é a média móvel simples das medições atuais e anteriores. Em modelos de previsão o valor, S t. É freqüentemente usado como estimativa ou valor de previsão para o próximo período de tempo, ou seja, como a estimativa para x no tempo t 1. Assim, temos: Isso mostra que o valor de previsão no tempo t 1 é uma combinação da média móvel ponderada exponencialmente anterior Mais um componente que representa o erro de previsão ponderado, epsilon. No tempo t. Assumindo que uma série de tempo é fornecida e uma previsão é necessária, é necessário um valor para alfa. Isso pode ser estimado a partir dos dados existentes, avaliando a soma dos erros de predição quadrados, obtendo com valores variáveis ​​de alfa para cada t 2,3. Definindo a primeira estimativa para ser o primeiro valor de dados observado, x 1. Nas aplicações de controle, o valor de alfa é importante, isto é, é usado na determinação dos limites de controle superior e inferior e afeta o comprimento de execução médio (ARL) esperado Antes que esses limites de controle sejam quebrados (sob o pressuposto de que a série temporal representa um conjunto de variáveis ​​independentes aleatoriamente, distribuídas de forma idêntica com variância comum). Nessas circunstâncias, a variância da estatística de controle: é (Lucas e Saccucci, 1990): os limites de controle geralmente são estabelecidos como múltiplos fixos dessa variância assintótica, p. - 3 vezes o desvio padrão. Se alfa 0.25, por exemplo, e os dados que estão sendo monitorados assumem ter uma distribuição Normal, N (0,1), quando no controle, os limites de controle serão - 1.134 e o processo atingirá um ou outro limite em 500 etapas na média. Lucas e Saccucci (1990 LUC1) derivam os ARLs para uma ampla gama de valores alfa e sob vários pressupostos usando os procedimentos da Cadeia de Markov. Eles tabulam os resultados, incluindo o fornecimento de ARL quando a média do processo de controle foi deslocada por algum múltiplo do desvio padrão. Por exemplo, com uma mudança de 0,5 com alfa 0.25, o ARL tem menos de 50 etapas de tempo. As abordagens descritas acima são conhecidas como suavização exponencial única. Uma vez que os procedimentos são aplicados uma vez às séries temporais e, em seguida, os processos de análise ou controle são realizados no conjunto de dados suavizado resultante. Se o conjunto de dados incluir uma tendência e / ou componentes sazonais, o alisamento exponencial de dois ou três estágios pode ser aplicado como meio de remoção (modelagem explícita) desses efeitos (veja ainda mais a seção sobre Previsão abaixo e o exemplo do NIST). CHA1 Chatfield C (1975) The Analysis of Times Series: Teoria e Prática. Chapman and Hall, London HUN1 Hunter J S (1986) A média móvel ponderada exponencialmente. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de Controle Médio Médio Ponderado Exponencialmente: Propriedades e Melhorias. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Testes de tabela de controle com base em médias móveis geométricas. Technometrics, 1, 239-250 Médias móveis Médias móveis Com conjuntos de dados convencionais, o valor médio é geralmente o primeiro, e uma das estatísticas de resumo mais úteis para calcular. Quando os dados estão na forma de uma série temporal, a série significa uma medida útil, mas não reflete a natureza dinâmica dos dados. Os valores médios calculados em períodos curtos, quer antes do período atual, quer centrados no período atual, são geralmente mais úteis. Uma vez que esses valores médios variam, ou se movem, à medida que o período atual se move do tempo t 2, t 3. etc., eles são conhecidos como médias móveis (Mas). Uma média móvel simples é (tipicamente) a média não ponderada de k valores anteriores. Uma média móvel ponderada exponencialmente é essencialmente a mesma que uma média móvel simples, mas com contribuições para a média ponderada pela proximidade com a hora atual. Como não há um, mas toda uma série de médias móveis para qualquer série, o conjunto de Mas pode ser plotado em gráficos, analisados ​​como uma série e usados ​​em modelagem e previsão. Uma série de modelos pode ser construída usando médias móveis, e estas são conhecidas como modelos MA. Se esses modelos forem combinados com modelos autorregressivos (AR), os modelos compostos resultantes são conhecidos como modelos ARMA ou ARIMA (o I é para integrado). Médias móveis simples Uma vez que uma série temporal pode ser considerada como um conjunto de valores, t 1,2,3,4, n a média desses valores pode ser calculada. Se assumirmos que n é bastante grande, e selecionamos um inteiro k, que é muito menor que n. Podemos calcular um conjunto de médias de bloco, ou médias móveis simples (da ordem k): cada medida representa a média dos valores de dados ao longo de um intervalo de observações k. Observe que o primeiro MA possível da ordem k gt0 é aquele para t k. Mais geralmente podemos soltar o subíndice extra nas expressões acima e escrever: Isto indica que a média estimada no tempo t é a média simples do valor observado no tempo t e as etapas de tempo precedentes de k-1. Se forem aplicados pesos que diminuam a contribuição das observações que estão mais longe no tempo, a média móvel é dita suavizada exponencialmente. As médias móveis são freqüentemente usadas como forma de previsão, pelo que o valor estimado para uma série no instante t 1, S t1. É tomado como MA durante o período até e inclusive o tempo t. por exemplo. A estimativa de hoje é baseada em uma média de valores registrados anteriores até e inclusive ontem (para dados diários). As médias móveis simples podem ser vistas como uma forma de suavização. No exemplo ilustrado abaixo, o conjunto de dados de poluição do ar mostrado na introdução deste tópico foi aumentado por uma linha de média móvel de 7 dias (MA), mostrada aqui em vermelho. Como pode ser visto, a linha MA suaviza os picos e as depressões nos dados e pode ser muito útil na identificação de tendências. A fórmula padrão de cálculo direto significa que os primeiros pontos de dados k -1 não possuem valor MA, mas, posteriormente, os cálculos se estendem ao ponto final de dados da série. PM10 valores médios diários, fonte de Greenwich: London Air Quality Network, londonair. org. uk Um dos motivos para o cálculo de médias móveis simples da maneira descrita é que permite que os valores sejam computados para todos os intervalos de tempo do tempo até o presente, e Como uma nova medida é obtida para o tempo t 1, o MA para o tempo t 1 pode ser adicionado ao conjunto já calculado. Isso fornece um procedimento simples para conjuntos de dados dinâmicos. No entanto, existem algumas questões com essa abordagem. É razoável argumentar que o valor médio nos últimos 3 períodos, por exemplo, deve estar localizado no tempo t -1, e não no tempo t. E para um MA em um número par de períodos, talvez ele deve estar localizado no meio do ponto entre dois intervalos de tempo. Uma solução para esta questão é usar cálculos de MA centrados, em que o MA no tempo t é a média de um conjunto simétrico de valores em torno de t. Apesar de seus méritos óbvios, essa abordagem não é geralmente usada porque requer que os dados estejam disponíveis para eventos futuros, o que pode não ser o caso. Nos casos em que a análise é inteiramente de uma série existente, o uso de Mas centrado pode ser preferível. As médias móveis simples podem ser consideradas como uma forma de suavização, eliminando alguns componentes de alta freqüência de uma série de tempo e destacando (mas não removendo) tendências de maneira similar à noção geral de filtragem digital. De fato, as médias móveis são uma forma de filtro linear. É possível aplicar uma computação média móvel a uma série que já foi suavizada, ou seja, suavizando ou filtrando uma série já suavizada. Por exemplo, com uma média móvel da ordem 2, podemos considerá-la como sendo calculada usando pesos, de modo que o MA em x 2 0,5 x 1 0,5 x 2. Do mesmo modo, o MA em x 3 0,5 x 2 0,5 x 3. Se nós Aplicar um segundo nível de suavização ou filtragem, temos 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3, isto é, a filtragem de 2 estágios O processo (ou convolução) produziu uma média móvel simétrica ponderada de forma variável, com pesos. Várias convoluções podem produzir médias móveis bastante ponderadas, algumas das quais foram encontradas de particular uso em campos especializados, como nos cálculos do seguro de vida. As médias móveis podem ser usadas para remover efeitos periódicos se computado com o comprimento da periodicidade como conhecido. Por exemplo, com os dados mensais, as variações sazonais podem ser muitas vezes removidas (se este for o objetivo) aplicando uma média móvel simétrica de 12 meses com todos os meses ponderados igualmente, exceto o primeiro e o último que são ponderados por 12. Isso ocorre porque haverá Tenha 13 meses no modelo simétrico (tempo atual, t. - 6 meses). O total é dividido por 12. Procedimentos semelhantes podem ser adotados para qualquer periodicidade bem definida. Médias móveis ponderadas exponencialmente (EWMA) Com a fórmula média móvel simples: todas as observações são igualmente ponderadas. Se chamássemos esses pesos iguais, alfa t. Cada um dos pesos k seria igual a 1 k. Então a soma dos pesos seria de 1, e a fórmula seria: já vimos que as múltiplas aplicações desse processo resultam na variação dos pesos. Com médias móveis exponencialmente ponderadas, a contribuição para o valor médio de observações mais removidas no tempo é deliberada reduzida, enfatizando eventos mais recentes (locais). Essencialmente, um parâmetro de suavização, 0lt alfa lt1, é introduzido e a fórmula revisada para: Uma versão simétrica desta fórmula seria da forma: se os pesos no modelo simétrico forem selecionados como os termos dos termos da expansão binomial, (1212) 2q. Eles somarão para 1, e como q se tornar grande, irá se aproximar da distribuição Normal. Esta é uma forma de ponderação do kernel, com o Binomial atuando como a função kernel. A convolução de dois estágios descrita na subseção anterior é precisamente esse arranjo, com q 1, produzindo os pesos. Em suavização exponencial, é necessário usar um conjunto de pesos que somem para 1 e que reduzem de tamanho geométricamente. Os pesos utilizados são tipicamente da forma: Para mostrar que esses pesos somam para 1, considere a expansão de 1 como uma série. Podemos escrever e expandir a expressão entre parênteses usando a fórmula binomial (1- x) p. Onde x (1-) e p -1, o que dá: Isto fornece uma forma de média móvel ponderada da forma: esta soma pode ser escrita como uma relação de recorrência: o que simplifica bastante a computação e evita o problema de que o regime de ponderação Deve ser estritamente infinito para os pesos somarem para 1 (para valores pequenos de alfa. Isso geralmente não é o caso). A notação utilizada por diferentes autores varia. Alguns usam a letra S para indicar que a fórmula é essencialmente uma variável suavizada e escreve: enquanto a literatura da teoria do controle geralmente usa Z em vez de S para os valores exponencialmente ponderados ou suavizados (veja, por exemplo, Lucas e Saccucci, 1990, LUC1 , E o site NIST para mais detalhes e exemplos trabalhados). As fórmulas citadas acima derivam do trabalho de Roberts (1959, ROB1), mas Hunter (1986, HUN1) usa uma expressão da forma: que pode ser mais apropriada para uso em alguns procedimentos de controle. Com o alfa 1, a estimativa média é simplesmente seu valor medido (ou o valor do item de dados anterior). Com 0,5, a estimativa é a média móvel simples das medições atuais e anteriores. Em modelos de previsão o valor, S t. É freqüentemente usado como estimativa ou valor de previsão para o próximo período de tempo, ou seja, como a estimativa para x no tempo t 1. Assim, temos: Isso mostra que o valor de previsão no tempo t 1 é uma combinação da média móvel ponderada exponencialmente anterior Mais um componente que representa o erro de previsão ponderado, epsilon. No tempo t. Assumindo que uma série de tempo é fornecida e uma previsão é necessária, é necessário um valor para alfa. Isso pode ser estimado a partir dos dados existentes, avaliando a soma dos erros de predição quadrados, obtendo com valores variáveis ​​de alfa para cada t 2,3. Definindo a primeira estimativa para ser o primeiro valor de dados observado, x 1. Nas aplicações de controle, o valor de alfa é importante, isto é, é usado na determinação dos limites de controle superior e inferior e afeta o comprimento de execução médio (ARL) esperado Antes que esses limites de controle sejam quebrados (sob o pressuposto de que a série temporal representa um conjunto de variáveis ​​independentes aleatoriamente, distribuídas de forma idêntica com variância comum). Nessas circunstâncias, a variância da estatística de controle: é (Lucas e Saccucci, 1990): os limites de controle geralmente são estabelecidos como múltiplos fixos dessa variância assintótica, p. - 3 vezes o desvio padrão. Se alfa 0.25, por exemplo, e os dados que estão sendo monitorados assumem ter uma distribuição Normal, N (0,1), quando no controle, os limites de controle serão - 1.134 e o processo atingirá um ou outro limite em 500 etapas na média. Lucas e Saccucci (1990 LUC1) derivam os ARLs para uma ampla gama de valores alfa e sob vários pressupostos usando os procedimentos da Cadeia de Markov. Eles tabulam os resultados, incluindo o fornecimento de ARL quando a média do processo de controle foi deslocada por algum múltiplo do desvio padrão. Por exemplo, com uma mudança de 0,5 com alfa 0.25, o ARL tem menos de 50 etapas de tempo. As abordagens descritas acima são conhecidas como suavização exponencial única. Uma vez que os procedimentos são aplicados uma vez às séries temporais e, em seguida, os processos de análise ou controle são realizados no conjunto de dados suavizado resultante. Se o conjunto de dados incluir uma tendência e / ou componentes sazonais, o alisamento exponencial de dois ou três estágios pode ser aplicado como meio de remoção (modelagem explícita) desses efeitos (veja ainda mais a seção sobre Previsão abaixo e o exemplo do NIST). CHA1 Chatfield C (1975) The Analysis of Times Series: Teoria e Prática. Chapman and Hall, London HUN1 Hunter J S (1986) A média móvel ponderada exponencialmente. J of Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Esquemas de Controle Médio Médio Ponderado Exponencialmente: Propriedades e Melhorias. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Testes de tabela de controle com base em médias móveis geométricas. Technometrics, 1, 239-250 Filtro médio de migração Você pode usar o módulo de filtro de média móvel para calcular uma série de médias de um lado ou de dois lados em um conjunto de dados, usando um comprimento de janela que você especifica. Depois de ter definido um filtro que atende às suas necessidades, você pode aplicá-lo às colunas selecionadas em um conjunto de dados, conectando-o ao módulo Apply Filter. O módulo faz todos os cálculos e substitui valores em colunas numéricas com médias móveis correspondentes. Você pode usar a média móvel resultante para plotar e visualizar, como uma nova linha de base lisa para modelagem, para calcular variações contra cálculos para períodos semelhantes e assim por diante. Este tipo de média ajuda você a revelar e prover padrões temporais úteis em dados retrospectivos e em tempo real. O tipo mais simples de média móvel começa em alguma amostra da série e usa a média dessa posição mais as posições n anteriores em vez do valor real. (Você pode definir n como quiser). Quanto mais longo o período n em que a média é calculada, menor será a variação entre os valores. Além disso, à medida que aumenta o número de valores utilizados, menor será o efeito de qualquer valor na média resultante. Uma média móvel pode ser de um lado ou de dois lados. Em uma média unilateral, apenas os valores anteriores ao valor do índice são usados. Em uma média de dois lados, os valores passados ​​e futuros são usados. Para cenários em que você está lendo dados de transmissão, as médias móveis cumulativas e ponderadas são particularmente úteis. Uma média móvel cumulativa leva em consideração os pontos anteriores ao período atual. Você pode pesar todos os pontos de dados igualmente ao calcular a média, ou você pode garantir que os valores mais próximos do ponto de dados atual sejam mais ponderados. Em média móvel ponderada. Todos os pesos devem somar para 1. Em uma média móvel exponencial. As médias consistem em uma cabeça e uma cauda. Que pode ser ponderado. Uma cauda levemente ponderada significa que a cauda segue a cabeça bastante perto, então a média se comporta como uma média móvel em um curto período de ponderação. Quando os pesos da cauda são mais pesados, a média se comporta mais como uma média móvel mais longa e simples. Adicione o módulo de filtro de média móvel à sua experiência. Para comprimento. Digite um valor de número inteiro positivo que define o tamanho total da janela em que o filtro é aplicado. Isso também é chamado de máscara de filtro. Para uma média móvel, o comprimento do filtro determina quantos valores são calculados a média na janela deslizante. Os filtros mais longos também são chamados de filtros de ordem superior e fornecem uma janela de cálculo maior e uma aproximação mais próxima da linha de tendência. Os filtros de ordem mais baixa ou inferior usam uma janela de cálculo menor e se assemelham mais aos dados originais. Para Tipo. Escolha o tipo de média móvel a ser aplicada. O Azure Machine Learning Studio suporta os seguintes tipos de cálculos de média móvel: uma média móvel simples (SMA) é calculada como uma média de rolamento não ponderada. As médias móveis triangulares (TMA) são médias duas vezes para uma linha de tendência mais suave. A palavra triangular é derivada da forma dos pesos que são aplicados aos dados, o que enfatiza os valores centrais. Uma média móvel exponencial (EMA) dá mais peso aos dados mais recentes. A ponderação diminui exponencialmente. Uma média móvel exponencial modificada calcula uma média móvel em execução, onde o cálculo da média móvel em qualquer ponto considera a média móvel previamente calculada em todos os pontos anteriores. Este método produz uma linha de tendência mais suave. Dado um único ponto e uma média móvel atual, a média móvel acumulada (CMA) calcula a média móvel no ponto atual. Adicione o conjunto de dados com os valores para os quais deseja calcular uma média móvel e adicione o módulo Aplicar filtro. Conecte o Filtro Médico Mover à entrada esquerda do filtro Aplicar. E conecte o conjunto de dados à entrada à direita. No módulo Aplicar filtro, use o seletor de coluna para especificar em quais colunas o filtro deve ser aplicado. Por padrão, o filtro que você criará será aplicado a todas as colunas numéricas, por isso certifique-se de excluir as colunas que não possuem dados apropriados. Execute o experimento. Nesse ponto, para cada conjunto de valores definidos pelo parâmetro de comprimento do filtro, o valor atual (ou índice) é substituído pelo valor médio móvel.

No comments:

Post a Comment